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POLARIZATION EFFECTS IN TWO-PHONON 

roc 
RAIMA~T SCATTERLiG IX CUBIC CRYSTALS 

Leonard Kleinman 
Department of Physics 

Unive r s ity of Southern Calif or nia 
Lo8 Angeles, California 

It is shown how to calculate which irreducible representations are 

present in any two-phonon state even when the individual phonons are 

degenerate; and how, using polarization effects, to determine experimentally 

which Raman active irreducible representations a r e  present in the two- 

phonon state responsible for any Van Hove singularity in the two-phbnon 

Raman dispersion curve. 

I. INTRODUCTION 

With the advent of new laser sources, two-phonon Raman scattering 

will almost certainly become a very widely used tool in the analysis of the 

phonon spectrum of solids. 

(1) How, with no additional e f fo r t  beyond the insertion of a polarizer and 

an analyzer, the experimentalist may determine which of the Raman 

It is the purpose of this note to point out: 

+ + +  
active irreducible representations (T' r U ,  rZ5 , )  are  present in the 
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two-phonon state responsible f o r  any critical point in the dispersion 

curve, greatly aiding in the identification-of the two-phonon state. 

( 2 )  if the phonons a r e  degenerate then the critical point consists of a 

superposition of several  Van Hove singularities; if the singularities are 

of different types, the symmetry content of each one may be determined 

separately. Thus the quantity of interest (which we calculate for diamond) 

is the irreducible representations contained in each two-phonon state 

rather than the sum contained in all the degenerate two-phonon states. 

The latter was calculated by Birman 1, 2 by taking cross products of 

the one -phonon irreducible representations. 

The theory of polarization effects in molecular Raman scattering 

3 
is well known. 

along the x direction, depolarization ratios, p = I / I  , a r e  defined where 

I and I a r e  the intensities of the z and y polarizations of scattered 

light and the incident light is either polarized along the z direction 

( D 3 p ) or is completely unpolarized ( p E 7 ). Birman states that the 

+ 
Raman scattered radiation from cubic crystals is depolarized if r = 0 

1 

For light incident along the y direction and observed 

Y Z  

Z Y 

2 
a n 

t + 3 
and r or r 4 0 as is the case for  molecular scattering. This 12 25 

however involves an average over orientations and thus is true only for 

powdered samples. 

discuss p for one particular orientation of incoming and scattered 

4 5 
and Burstein On the other hand Johnson and London 

n 
+ + 

radiation. 

r, 4 0 in which ( 1 ) ~ ~  = pn = 0, ( 2 ) p  

p # 0 (in the molecular case p = 0 - = 0). It is therefore our feeling 

We shall demonstrate three cases where T 1 .  - - r2, = 0 and 

+ 
0 and p $ 0 and ( 3 ) p  = 0 and a n a 

n n pa 
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that dipolarization ratios become a somewhat useless concept for 

crystals. 

U. POLARIZATION EFFECTS 

The polarization operator responsible for Raman scattering is 

a eecond rank tensor and thus may be decomposed into the three 

symmetrical irreducible representations of the cubic point group 

plus the three fold degenerate anti-symmetric representation T- 15 . 
5 

However Loudon has shown the anti-symmetric part of the Raman 

is usually negligible in one-phonon processes and w e  shall assume 

0 

tensor 

this to 

be true for two-phonon processes as well. 

between the ground state which has the f u l l  cubic symmetry r 

the two-phonon state vanishes unless the two-phonon state contains the 

r l ,  S‘12 , or I‘ 

of the scattered light is immediately determined by multiplying the 

polarization vector of the incident light by the tensors r. 
representations contained in  the two-phonon state to obtain the electric 

Thus the matrix element 

and 
+ 
1 

+ + 
irreducible representations. Furthermore the polarization 

25 

cy 

1 
of the 
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3 
Q 

-1 
moments M. induced by the transition. Then using 

(Y w r *12 
p t  -gkyj "Mi _I Ii = - 

4 

2nc 
3 

where bQ-kk) projects M? onto the plane perpendicular to the direction 
-1 W h  

of observation 5, we obtain the intensity of the light scattered by the 

cy 

1 
r. 
the radiation to be incident in the [110] direction. 

part  of the induced electric moment in the ,k direction. Let us assume 

We show in Table I 

the induced electric moments for light polarized in the COO1 land [ l i O ]  

directions. Let the scattered radiation be observed in the [ l i O ]  direction;' 

then Table 11 shows the magnitude of the I.'s observed when the analyzer 

is set  to  pass COO1 1 and [110] polarized radiation. Thus we see that: 

(1) with a [11'03 polarizer and a [l l o ]  analyzer we can immediately 

1 

determine which singularities in the dispersion curve a r e  caused by 

+ 
12 phonon pairs containing r symmetry, (2) with either a [liO]polarizer 

and a [ O O l ;  analyzer or a [OOl] polarizer and a [ l l O ]  analyzer we 

+ 
25 determine the r singularities, (3) by subtracting 2/[3 of the dispersion 

curve obtained in (1) from the dispersion curve obtained with a [ O O l ]  

polarizer and a [ O O l ]  analyzer one is left with a dispersion curve whose 

+ 7 
1 singularities a re  due to phonon pairs containing r symmetry. 

+ +  + 
if r1 = r2, = 0, rZ 4 0 Note that for the case displayed in Table 11, 

and the incident light is [OOl] polarized p = 112(110)/1~(001) = 0 but if 

the incident light is unpolarized i. e. contains both [ O O l ]  and [liOI 
a 

1 
n 2 polarizations p = 112(110)/1~(001) = - J3. It is also easy to see that if 

t 
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the radiation is incident in the [ loo]  direction and observed along the 

[OlO] direction both p = 0 and p = 0 but i f  the radiation is incident along 

[ l l O ]  and observed along [OOl) both p 0 and p d 0 thus proving 

that statements about depolarization ratios in crystals are quite meaningless 

unless both the direction of incidence and observation a re  specified. 

n L 

n a 

IU. SYMMETRY OF TWO-PHONON STATES 

8 9 there a r e  four types of square root Van Hove According to Phillips 

singularities (P P or F P or F and P ) and two types of linear 

singularities (P (1) and P (1) ).leading to discontinuities in the slope 0 3 

of the density of states curve. 

reference 4. ) The subscripts specify in how many directions w1(&) +w2(-&) 

(the two-phonon energy) is a maximum. 

specify in how many directions the derivative of w (Ic)+uI (-lc) is 

discontinuous at the critical point. 

singularities in the two-phonon density of states at X, L, and W in Ge 

according to the shell model calculation of Johnson and Cochran 

displayed in Figure 1, 

for the number of discontinuities in the derivative of w (3 + w  (-kJ which 

depends only on crystal symmetry. 

a t  W can lead to slope discontinuities in the two-phonon Raman dispersion 

curve. 

0’ 1 1’ 2 2’ 3 

(These a r e  displayed in Figure 2 of 

The numbers in parenthesis 

1 2 

In Table UJ we display the Van Hove 

10’4 

The type of singularity depends on the model except 

1 2 

Therefore only three of the singularities 

- 5 -  



' .  

For each different singularity in Table III we show the calculated 

Raman active irreducible representations present as well a s  the infrared 

active irreducible representation r -  
15' 

this for non degenerate two-phonon states or  to calculate the total contri- 

bution from all  the degenerate two-phonon states when the singularities a t  

a crit ical  point a r e  all identical (e. g. TO-TO at X or  L), is by a method 

due to Lax and Hopfield. 

for individual degenerate two -phonon states we consider particular 

examples at W and X. 

The simplest way to calculate 

To show how to calculate this in general 11,12 

1 1 13 
2 2 

The two Q-lines  CY, a, -) and (1 +CY, a, -) and the 2-line 

1 1 
2 (1, 0 ,  - - CY) form an orthogonal coordinate system ( S I T ,  5) at W = ( l , O , $ .  

Let us consider the degenerate LO-LO, LO-LA, and LA-LA singularities. 

The degenerate LO and LA phonons transform like 

.n n 
-1- z i-z 

2ll a 2n a x e  + cos-ye a a 

. I I  I I  
-1- z i - z  a 2m a ( 2 )  = s i n 2  x e + i sin-y e 

w1 a a 

(3) 

If we measure from the W point, the degenerate W phonons a r e  mixed 

by a perturbation of the form (k,P + k P ) (analogous to the k, p 
s s  7 1 7  

perturbation for electrons). Thus in first order the "k p" perturbation 

splits the degeneracy at W as long as  5 is not strictly parallel to the 

2-line. (If is strictly parallel to Z the degeneracy is not split to any 

order in 'Is p" as is obvious from Figure 1. ) We find the combination of 

- -  

.v 
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W functions which diagonalize the 'I!, E'' matrix a re  (for & in any direction) 

14 
W e  now create the two-phonon wave functions 

LO* LO 
LO-LO=(Q1  ) (Q1 1 

LA-LA=(Q2 LA* ) (Q, LA ) 

LA * LO LO 4 LA LA-LO = ( Q 2  ) (Ql 1 and(Q1 1 (Q, 

By simply operating on these two -phonon functions with the projection 

operator 15 

CY 

1 
One obtains the basis functions with r. symmetry contained in the two-phonon 

CY 
functions. Since we are  not interested in a particular r, basis function 

per se  but only in whether or not it exists and is different from other r; 
basis functions, it is sufficient to limit the s u m  over R to  operations in the 

- 
Q 

1 

group of the wave vector W. 

LO-LO P (2) singularity and LA-LA P (2) singularity both contain 

Thus we find (and list in Table III) that the 

0 2 
+ +  + + and that the LO-LA P singularity contains only I' 

+ 5 s  2 25 ' 
r +r, 1 
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A s  a further example let us consider again the degenerate LA-LA, 

LO-LO, LA-LO singularities, this time at X. The degenerate phonons a t  

X transform like 

The A-line (1 -CY, 0,O) and the two S-lines (1, cy, cy) and (1, -cy, u ) form an 

orthogonal coordinate system ( 5 ,  7 , c )  at X = (1,0,0). 

which n > i u c . s  X:') and X1 

The perturbation . 

(2) as one goes away from X is of the form 

(ik P- - k k P . The Combination of X functions which diagonalize 
5 s  7 c d  

this perturbation is 

-1 
where cp = tan (k P /k k P and the Anotation corresponds to the 

5 5  7 6 7 1 5 )  
standard notation when cp = n/2. W e  again create two-phonon wave functions 

as in Eq. 5 and by operating with the projection operator (6) may determine 

their symmetry content. However because X ( l )  and X ( 2 )  a r e  real  there is 

a somewhat easier method to determine the symmetry content of the two- 

phonon functions. 

1 1 

If we divide-the set of four functions into two pairs 

separately forms a complete set  of basis functions spanning the space of 

the group of the wave vector so that each pair with corresponding pairs from 

the (0, 1 , O )  and ( O , O ,  1) X points forms a complete set  of basis functions for a 

reducible representation of the full cubic group. The determination of the irreducible 

- 8 -  



15 
representations contained in t h e  reducible representations is straightforward. 

One finds T'i JL and l& contained in the TA-TA and TO-TO functions 

and only r25 contained in the TA-TO functions. 

special value zero note that ( ) (A ,)= (A  

the TA-TO function does not contain even r On the other hand when 

9 

and TO-TO functions do not contain r but still contain r and I' 

t 
When cp takes on the 

* 4 
( A l ) .  

t 
25' 

In this case one finds 
4 2  2 

2 * 8 
= n/2  note that (A,) (A1)= Then one finds that the TA-TA 

t + + 
25 1 12' 

Now to determine the contribution to the Raman scattering from phonons 

around the critical point one evaluates 

where & is measured from the critical point, E($ represents the two- 

phonon energy, and T .  (cp) is a matrix element for the contribution of the 

i irreducible representation to the Raman scattering. 7. (cp) is usually 

taken to be a constant but we have shown here on group theoretical grounds 

1 

th 
1 

alone that for the TA-TA and TO-TO branches (n /2)  = 0 and for 

the TA-TO branch 

g (E) for the LA-LA branch.to still have a linear singularity in spite 

of n725(n/2) = 0. This is because e p =  - corresponds to the component 

25 

25(0) = 0. Examination of the integral (9) shows 

25 
T; 

2 

of E which is discontinuous and thus never contributed to the singularity. 
k 

On the other hand g (E) for the LA-LO branch is no longer a simple 

square root. However in the limit E-E (where cp means critical point), 

g 

25 

CP 

(E) does approach the simple square root obtained when v2, is constant. 
25 

-1 
This is because for E + E  rp = tan (k P / k  k P ) = n/2  over all but a 

CP' s s 7 5 T,S 
negligible 
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. part  of the volume of integration. 

branch (non singular) and the LA-LA branch (linear singularity) contain 

Thus we list in Table III that the LO-LO 
16 

t t  + 
'1' r12' r25 while the LO-LA branch (square root singularity) contains 

This X1 - X critical point is a good example of the advantage to 1 

be gained by using polarized light for Raman experiments. 

o r  with polarizer and analyzer set to pass I' scattering, a square root  

singiilarity will be seen; the linear singularity will be present but will 

With no polarization 

+ 
25 

not be distinguishable in the presence of the square root singularity. 

+ + + 
With the polarizer and analyzer set  to pass r and/or r, but not I' 1 25 

scattering, a linear singularity will be seen. This will identify the critical 

point as the X overtone beyond any doubt. 1 

The author wishes to express his thanks to Professor El i  Burstein 

for  first suggesting to him the possible importance of polarization effects 

in two-phonon Raman scattering. 
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. TABLE I. 

Induced Electric Moments 

Incident 
.Polarization 

(1 )+ T 25 

0 

a 
25 - 

2a 
l2  (ooi )  r 0 

[i io] 

Electric moments induced by two incident polarizations for each of the 
symmetric irreducible representations of the polarization tensor. 

TABLE XI. 

Incident 
Polarization 

Scattered 
Polarization Non Zero I i 

2 
2a 12 I1 = a l  2 

[ O O l I  

[ i i o ]  [OOlj 

[ i i o ]  2 
12 112 = a  

Non zero Ii's as  a function of polarizer and analyzer settings, applicable 
to [110] incident radiation and a [lTOl direction of observation. 

(2)t and I' ( 3 ) +  induced electric moments a r e  factor (2) in I is present i f  the r 
coherent. Note that the factor w /2n c in Eq. 3 has been absorbed in the a*,  

The 

25 4 25 3 25  

1 
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TABLE III. 

L W 
? f 

I TO1 + TO1 

X 

'1 + +  + 
TO2 + TO2 r, +r12+rZ 

TO1 + TO2 

+ 
~ 0 1 , 2  + LO ~ ~ ( 1 )  rZ+ri5 

+ 
T01 ,2  + LA P3(1) T25+r; 

+ - 
12 r +';s T01.2 +TA2 F2 

P (1) rl+r,+rz + +  
2 LO + LO 

i LO + TA2 

+ 
LA + TA1,2 F2(1) r2,+rL 

r:+rL r2, + 
pl 

TA1 + TA1 

TA2 + TA2 F2 r; + r; + r; 

0 
p1 TA1 + TA2 

i 
;"' 

p2 

i: 

[pl 

p2 

p1 

p3 

P 
0 

p2 

p1 

J 

i 

~ ( 2 )  r + +  +r,+r, + 
1 1 

+ +  + 
~ 4 2 )  rl +r, + r, 

+ + +  
~ ~ ( 2 )  r 1 1 2 2 5  + r  + r  + r i  

L A  A 

P (2) r; +r'  + r& 
0 12 

+ 
rZ 

r, + + 2rz + 

p3 

3 
Types of critical points (according to Loudon and Johnson ) and Raman and 
infrared symmetry content of two-phonon wave functions at X, L and W for Ge. 
The six phonon braches a r e  labled in order of decreasing energy T01,  T02, LO, L A  
TAl,  TA2 although the phonons have simple longitudinal and transverse polari- 
zations only in certain symmetry directions. 
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2 2 

To keep within the usual Brillouin Zone replace ( l+a,  CY, -) by (-l+a,  CY, - ) 
which differs by the (2,0,0)  reciprocal lattice vector. 

To deal with degenerate two-phonon states where the two phonons are 
not degenerate with each other e. g. LO and LA with TO1 and TO2 is 
no more difficult. 

obtained however because LO-TO1 = (Q ) (a, ) and (Q1 ) (Q1 ) 

etc. 

In general more irreducible representations are 
L O *  TO1 T 0 1 *  LO 
1 

See for  example: 
(McCraw-Hill Book Co., New York 1964) Chapter 3. 

Actually reference 8 is incorrect (J. C. Phillips agrees) and P (1) and P (1) 

singularity depends on contributions to g(E) from large values of k and 
hence cannot be predicted from a knowledge of the type of singularity alone. 

AM. Tinkham, Group Theory and Quantum Mechanics 

points may display linear singularities. However the exact form 1 of the 2 
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